“近朱者赤,近墨者黑”可以说是 KNN 的工作原理。整个计算过程分为三步:
K 值如何选择
如果 K 值比较小,就相当于未分类物体与它的邻居非常接近才行。这样产生的一个问题就是,如果邻居点是个噪声点,那么未分类物体的分类也会产生误差,这样 KNN 分类就会产生过拟合。
如果 K 值比较大,相当于距离过远的点也会对未知物体的分类产生影响,虽然这种情况的好处是鲁棒性强,但是不足也很明显,会产生欠拟合情况,也就是没有把未分类物体真正分类出来。
所以 K 值应该是个实践出来的结果,并不是我们事先而定的。在工程上,我们一般采用交叉验证的方式选取 K 值。
交叉验证的思路就是,把样本集中的大部分样本作为训练集,剩余的小部分样本用于预测,来验证分类模型的准确性。所以在 KNN 算法中,我们一般会把 K 值选取在较小的范围内,同时在验证集上准确率最高的那一个最终确定作为 K 值。
在knn 中. 距离越大, 差异性越大. 距离越小, 差异性越小
距离的计算方式有下面5种, 常用的是前3种